欧美性区-国产v在线在线观看视频-精品无码国产av一区二区-美女精品一区-伊人伊成久久人综合网站-小12萝裸体视频国产-海量av资源-娇小xxxx性开放国产精-成人无码视频在线观看大全-日韩女同强女同hd-日韩在线欧美-成人性欧美丨区二区三区-色青网-九九综合九色综合网站-久久理论片午夜琪琪电影院

撥號18861759551

你的位置:首頁 > 技術文章 > 使用塑料混合非球面透鏡的優點

技術文章

使用塑料混合非球面透鏡的優點

技術文章

Advantages of Using Plastic Hybrid Aspheric Lenses

TECHSPEC® Plastic Hybrid Aspheric Lenses are low cost optical components that lack both spherical and chromatic aberrations. These aspheric lenses provide optical designers with unique, single element solutions for achieving diffraction-limited focusing performance at high numerical apertures with broadband light sources. These aspheric lenses consist of a diffractive surface that has been added to a molded aspheric lens. The aspheric lens eliminates all spherical aberration, while the diffractive surface has a net effect of introducing negative dispersion – when properly tuned to the refractive index and wavelength design of the lens, chromatic aberration is eliminated as well.

 

Spherical and Chromatic Aberrations

There are two major forms of axial optical aberrations inherent in common optical lenses: spherical aberration and chromatic aberration. Spherical aberration is an inherent characteristic of any lens whose surface is a section of a sphere. Light originating from the same object point comes to a focus at slightly different points (P and P’), depending on whether the rays pass through the center of the lens or the periphery (Figure 1).

Figure 1: Spherical Aberration in a Single Positive Lens

 

igure 2.1: Transverse Chromatic Aberration of a Single Positive Lens

 

Figure 2.2: Longitudinal Chromatic Aberration of a Single Positive Lens

 

Chromatic aberration results from material dispersion. Because different colors of light refract by different amounts, an image point formed by light of one color does not coincide with the corresponding image point formed by light of a different color (Figures 2.1 and 2.2).

 

Important Equations

Spherical aberration is typically eliminated by substituting an aspherical surface for the more common spherical surface. The surface profile (sag) is given by Equation 1:

Where

Z = sag of surface parallel to the optical axis

s = radial distance from the optical axis

C = curvature, inverse of radius

k = conic constant

A4, A6, A8 = 4th, 6th, 8th… order aspheric terms

 

However, this does not correct chromatic aberration. Therefore, for a monochromatic light source, the aspheric surface will provide diffraction limited focusing at a single wavelength, but will suffer a large spot size over a broader wavelength.

 

A diffractive surface will correct the spherical aberration, as shown in Equation 2.

Where
Y = radial position from center of lens (for instance, if 0 is the center of the lens, 12.5mm will be the edge of a 25mm diameter lens, etc.)
nd = index of refraction of the material at 587.6nm
Step Height = λ/nd-1
λ = the wavelength of interest

By combining the two features onto a single element, a component that eliminates both chromatic and spherical aberration is created. That surface is described simply as the sum of the Zasph and Zdiff coefficients.

For tips on modeling diffractives in Zemax and Code V, visit the Optics Realm blog.

 

Customer Benefits

Optical designers often need to focus light at very short distances, or collect and collimate as much light as possible from very divergent light sources. Basic optical principles dictate that a high numerical aperture optical lens is required for either of these scenarios. A high numerical aperture optical lens will typically have a focal length equal to or shorter than the clear aperture of the optical system, allowing the designer to maintain as compact of an optical train as possible.

For example, an optical designer has multiple options for achieving a focal length that is equal to his clear aperture (a scenario known as an F/1 lens, or a lens with a numerical aperture of 0.50). The simplest option is to use a standard plano-convex lens, available from a number of distributors. Spot diagram, chromatic focal shift graph, polychromatic diffraction MTF, and transverse ray fan plot for the wavelength range of 486 - 656nm are provided for #45-097 25mm Diameter x 25mm FL PCX lens.

 

PCX Lens

Figure 3.1: Spot Diagram for #45-097 25mm Dia. x 25mm FL PCX Lens

Figure 3.2: Chromatic Focal Shift Graph for #45-097 25mm Dia. x 25mm FL PCX Lens

Figure 3.3: Polychromatic Diffraction MTF Graph for #45-097 25mm Dia. x 25mm FL PCX Lens

Figure 3.4: Transverse Ray Fan Plot for #45-097 25mm Dia. x 25mm FL PCX Lens

 

For improved performance, the optical designer could consider an achromatic lens of the same form factor, for example #65-553 25mm Diameter x 25mm Focal Length Achromatic Lens. Again, the same characteristics are shown over the same wavelength range. A 74% decrease in spot size with a 73% decrease in chromatic focal shift can be seen, yielding an MTF of 13 lp/mm at 40% contrast, a substantial gain versus the aforementioned singlet lens.

Figure 4.1: pot Diagram for #65-553 25mm Dia. x 25mm FL Achromatic Lens

Figure 4.2: Chromatic Focal Shift Graph for #65-553 25mm Dia. x 25mm FL Achromatic Lens

Figure 4.3: Polychromatic Diffraction MTF Graph for #65-553 25mm Dia. x 25mm FL Achromatic Lens

Figure 4.4: Transverse Ray Fan Plot for #65-553 25mm Dia. x 25mm FL Achromatic Lens

For maximum performance, the optical designer should choose a plastic hybrid aspheric lens. In this scenario, the exact same form factor and wavelength range are used, this time with #65-992 25mm Diameter x 25mm FL Hybrid Aspheric Lens. As shown, this lens provides diffraction limited focusing performance, yielding the optimum performance for the designer.

 

Plastic Hybrid Lens

Figure 5.1: Spot Diagram for #65-992 25mm Dia. x 25mm FL Hybrid Aspheric Lens

Figure 5.2: Chromatic Focal Shift Graph for #65-992 25mm Dia. x 25mm FL Hybrid Aspheric Lens

Figure 5.3: Polychromatic Diffraction MTF Graph for #65-992 25mm Dia. x 25mm FL Hybrid Aspheric Lens

Figure 5.4: Transverse Ray Fan Plot for #65-992 25mm Dia. x 25mm FL Hybrid Aspheric Lens

Comparing the spot diagrams, chromatic focal shift graphs, polychromatic diffraction MTFs, and transverse ray fan plots of a plano-convex (PCX) lens, achromatic lens, and hybrid aspheric lens, it is easy to see the advantages of using plastic hybrid aspheric lenses for achieving diffraction-limited focusing performance at high numerical apertures with broadband light sources.

 

Selection Guide

Edmund Optics® TECHSPEC® Plastic Aspheres and TECHSPEC® Plastic Hybrid Aspheres families are both manufactured utilizing Zeon Chemical’s Zeonex E48R material. Zeonex materials feature high transparency, low fluorescence, low birefrengence, low water absorption, and high heat and chemical resistance, making it a superior material vs. other commonly available plastics. Zeonex is a Cylco Olefin Polymer (COP) material.

Plastic Materials Selection Guide

Property

Glass

Zeonex E48R

PMMA

Polycarbonate

Polystyrene

Arton®

Transmission

Excellent

Excellent

Excellent

Good

Very Good

Excellent

Low Refractive Index

Excellent

Excellent

Excellent

Poor

Poor

Good

Low Birefringence

Excellent

Excellent

Excellent

Poor

Poor

Excellent

Low Water Absorption

Excellent

Excellent

Poor

Good

Excellent

Excellent

Impact Resistance

Poor

Good

Good

Excellent

Good

Excellent

Moldability

Fair

Excellent

Good

Excellent

Excellent

Good

Heat Resistance

Excellent

Good

Poor

Good

Poor

Very Good

Coating Adhesion

Excellent

Good

Fair

Fair

Fair

Good

聯系我們

地址:江蘇省江陰市人民東路1091號1017室 傳真:0510-68836817 Email:sales@rympo.com
24小時在線客服,為您服務!

版權所有 © 2025 江陰韻翔光電技術有限公司 備案號:蘇ICP備16003332號-1 技術支持:化工儀器網 管理登陸 GoogleSitemap

在線咨詢
QQ客服
QQ:17041053
電話咨詢
0510-68836815
關注微信
主站蜘蛛池模板: 日韩在线一二三| 成人免费看片39| 精品在线免费观看视频| 亚洲综合一二三区| 蜜桃av成人永久免费| 性感一级片| 日韩精品午夜| 四季av一区二区夜夜嗨| 天天干天天插天天操| 久久综合电影| 一区二区三区亚洲| 国产毛片久久久久| 中字幕视频在线永久在线观看免费| 美女露胸露尿口| 四虎首页| 国产精品久久久久久免费免熟| 国产观看| 又色又爽又黄无遮挡的免费视频| 色一情一区二区三区四区| 97香蕉碰碰人妻国产欧美| 久久久精品美女| www.黄色.| 中文字幕网站在线观看| 亚洲女人毛片| 成人无码一区二区三区| 德国艳妇丰满bbwbbw| av小四| 极品色av影院| 四虎在线精品| 天天操天天添| 国产中文字幕一区| 福利电影网| 男人的天堂日韩| 韩国激情在线观看| 午夜视频在线观看网站| 精品动漫一区二区| 天码人妻一区二区三区在线看| 国产69精品久久久久毛片| 午夜免费福利片| 久久av综合网| av在线播放器| 18成人免费观看网站| 欧美性猛交p30| 男人桶进美女尿囗| www.夜夜操.com| 口述性高潮| 你懂得在线视频| 少妇大叫太大太粗太爽了a片小说| 日韩成人av网址| 涩涩涩网站| 依人成人| 欧美a√| 温柔少妇的高潮金珠| 国产一级美女| 人人爽人人做| 美女又爽又黄视频毛茸茸| 性囗交免费视频观看| 婷婷久久综合网| 精品久草| 9.1人网站免费| 日本在线无| 国产免费看黄| 欧美77777| 精品999| 骚年操老头| 黄色的网站在线观看| 成人开心网| 国产无遮挡网站| 最黄一级片| 成年人在线免费| 日本精品久久久久| 伊人网av在线| 日韩av片在线免费观看| japanese糟蹋bonge| 成人在线视频网| 日日干日日色| 久久社区视频| 99国产精品久久久久久久久久久| 国产精品一区二区无码免费看片| 91.久久| 色眯眯视频| 成人在线视频观看| 白丝校花让我c| 久久亚洲天堂网| 亚洲区一区二| 中文字幕黄色av| 国产乱国产乱老熟300| 黄色草逼视频| 国产精品亚洲自拍| 亚洲女人久久久| 日本欧美一级片| 老司机久久| 午夜精品欧美| 久热免费| av天堂一区| 日本高清有码视频| 黄色三级日本| 女性扒开大腿| 91午夜交换视频|